

FIELD TESTING AND NUMERICAL MODELLING OF BATTERED MINIPILE SYSTEMS

PROJECT AIM

Understanding the behaviour of group minipiles in cohesive soil as well as correlating driving data with its ultimate bearing capacity

SITE SELECTION

DOOKIE CAMPUS THE UNIVERSITY OF MELBOURNE

METHODOLOGY

GEOTECHNICAL INVESTIGATIONS

GEOLOGY -COLLUVIUM AND LAKE DEPOSITS

VANE SHEAR

DYNAMIC CONE PENETROMETER TEST

OBJECTIVES

Correlating the minipile capacity under tensile loadings with its capacity under compressive loadings

Linking the individual minipile capacity to the group minipile performance under vertical loading

Understanding the behaviour of a minipile group under various loading conditions.

Developing a correlation between the minipile capacity under tensile loadings with its driving data

TEST PROCEDURE

- Compression test of footings as per ASTM D1143, for both General and H6 footings - Tension test of footings as per ASTM 3689 for both General and H6 footings

CALIBRATED LOAD CELL

MULTIPLE FOOTINGS TESTED

TENSION TEST

COMPRESSION TEST

ENGINEERED FRAME

--+--B28-6-T 180 160 -----B28-4-T 140 120 Load (kN) 80 → B28-6-C → B28-4-C 60 40 20 Displacement (mm) LOAD-DISPLACEMENT CURVES

RESULTS

Analysis of failure loads and analytical method to predict future capacities based on geotechnical parameters

ESTIMATION OF FAILURE LOADS

CONCLUSIONS

- Battered minipile groups do not show full mobilisation of friction during tension loading
- The efficiency of battered minipile groups is larger than the efficiency of vertical minipile groups in compression.

ADVANTAGES

QUICK INSTALLATION

DURABLE

EASY TO INSTALL

VERSATILE

SAND CLAY SILT LOAM **ROCK**

Melbourne Granular Geomaterial Laboratory https://infrastructure.eng.unimelb.edu.au/melbourne-granular-geomaterial-laboratory

Alberto Escobar - PhD Candidate aescobar@student.unimelb.edu.au A/Prof. Mahdi Disfani - Supervisor mahdi.miri@unimelb.edu.au

+61 3 8344 5972

info@allfootings.com.au

www.allfootings.com.au

+61 3 8596 2059